10EE764

Seventh Semester B.E. Degree Examination, June/July 2019

VLSI Circuits and Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

With a neat diagram, explain the working of basic nMOS enhancement mode transistor. 1

(08 Marks)

- Explain with neat diagrams the process of fabrication of p-well CMOS inverter. (08 Marks) b.
- Explain the procedure used for production of e-beam mask. (04 Marks)
- Derive an expression for pull-up to pull down ratio for an nMOS inverter driven through one 2 or more transistors and hence find the typical value for it. (08 Marks)
 - b. Explain latch-up in CMOS circuits with relevant diagrams and waveforms. (07 Marks)
 - An nMOS transistor has $L=2~\mu m$, $W=20~\mu m$ and $\mu_n C_o=90~\mu A/V^2$, $V_{tn}=0.5~V$. Determine drain to source current for $V_{gs} = 3.3 \text{ V}$, $V_{ds} = 2 \text{ V}$. (05 Marks)
- Explain Lambda (λ) based design rules as applicable to wires and transistors with 3 appropriate diagrams. (08 Marks)
 - b. Draw the circuit symbol and stick diagrams for CMOS inverter. (06 Marks)
 - Draw the stick diagram and layout for nMOs shift register cell. (06 Marks)
- What is sheet resistance? Calculate sheet resistance of transistor channel if $L = 8\lambda$, $W = 2\lambda$, if n-transistor channel $R_s = 10^4 \Omega/\text{square}$. (04 Marks)
 - b. With schematic diagrams, explain inverting and non-inverting super buffers. (06 Marks)
 - Explain three different kinds of wiring capacitances. (05 Marks)
 - Briefly explain BiCMOS drivers.

(05 Marks)

PART - B

- Derive scaling factor for any 10 device parameters. (10 Marks) 5 a.
 - Discuss the limitations of scaling on interconnect and contact resistance. (10 Marks) b.
- Draw the symbolic diagram for BiCMOS 2 input NAND gate. (06 Marks)
 - Explain in detail pseudo nMOS logic taking inverter as an example. (06 Marks) b.
 - With block diagram and stick diagram explain the design approach of a parity generator.
 - (08 Marks)
- (06 Marks) Draw and explain combinational circuit to generate 2-phase clocking. 7 a.
 - Explain pre-charged bus concept with circuit diagrams. (06 Marks) b.
 - Explain the operation of 4×4 cross bar switch with a neat diagram. (08 Marks)
- Explain with diagrams and expressions how to implement ALU functions with an adder? 8 a.

(10 Marks)

Draw the structure of multiplexer based adder logic with stored and buffered sum output (10 Marks) with n switches.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.